Genome-wide detection of testis- and testicular cancer-specific alternative splicing.
نویسندگان
چکیده
Alternative pre-messenger RNA (mRNA) splicing is a key molecular event that allows for protein diversity and plays important roles in development and disease. Alternative pre-mRNA splicing regulations during spermatogenesis and alternative pre-mRNA splicing etiology in testicular tumorigenesis are yet to be characterized. By genome-wide analysis, here we describe alternative splicing features that distinguish distinctive patterns of alternative pre-mRNA splicing among human testis, testicular cancer and mouse testis. Through computationally subtractive analysis, we detected 80 testis-specific transcript candidates in human testis, 175 in human testicular cancer and 262 in mouse testis, which were integrated into a database. Reverse transcription-polymerase chain reaction confirmed that most of these transcript candidates from mouse testis were testis specific. Around 40% of the transcripts were from unknown/hypothetical genes, which were useful for further functional analysis. These transcripts were not overlapped, indicating lack of evolutionary conservation. Further chromosome mapping showed distinct chromosomal preference of alternative pre-mRNA splicing events. Comparison analysis indicated that alternative pre-mRNA splicing in human testicular tumor shared some characters/trends with those in mouse testis. Moreover, human testicular tumor tended to use rare splice sites and there were also distinct sequences adjacent dominant splice sites between normal testis and testicular tumor. These special features of alternative pre-mRNA splicing in human testicular tumor suggested that testicular tumorigenesis was involved in multiple steps/levels of alternative splicing events. Using alternative splicing as a potential source for new clinical diagnostic, prognostic and therapeutic strategies for treatment of testicular tumors seems to have a bright prospect.
منابع مشابه
Genome-wide detection of testis- and testicular cancer-specific alternative splicing Running title: Alternative splicing features of testis
Alternative pre-mRNA splicing (AS) is a key molecular event that allows for protein diversity and plays important roles in development and disease. AS regulations during spermatogenesis and AS aetiology in testicular tumorigenesis have not yet to be characterized. By genome-wide analysis, here we describe alternative splicing features that distinguish distinctive patterns of AS among human test...
متن کاملExpression Analysis of RNA-Binding Motif Gene on Y Chromosome (RBMY) Protein Isoforms in Testis Tissue and a Testicular Germ Cell Cancer-Derived Cell Line (NT2)
a key factor in spermatogenesis and disorders associated with this protein have been recognized to be related to male infertility. Although it was suggested that this protein could have different functions during germ cell development, no studies have been conducted to uncover the mechanism of this potential function yet. Here, we analyzed the expression pattern of RBMY protein isoforms in test...
متن کاملRole of Aberrant Alternative Splicing in Cancer
Alternative splicing can alter genome sequence and as a consequence, many genes change to oncogenes. This event can also affect protein function and diversity. The growing number of study elucidate the pathological influence of impaired alternative splicing events on numerous disease including cancer. Here, we would like to highlight the significant role of alternative splicing in cancer biolog...
متن کاملI-40: Male Genome Programming, Infertility and Cancer
Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...
متن کاملI-45: FISH and Array CGH for PGD of Cancer
We developed several FISH approaches to enable preimplantation genetic diagnosis of cancer predisposition syndromes. An overview of the applications and the results of those PGDs will be provided. In addition we developed several novel tools to genome wide screen for CNVs and SNPs in single cells. Those technologies are now being applied for polar body, blastomere and blastocyst screening for c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 28 12 شماره
صفحات -
تاریخ انتشار 2007